Deep Learning for Loudspeaker Digital Twin Creation

Bryn Louise, Teodors Kerimovs, Sebastian Schlecht

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Several studies have used deep learning methods to create digital twins of amps, speakers, and effects pedals. This paper presents a novel method for creating a digital twin of a physical loudspeaker with stereo output. Two neural network architectures are considered: a Recurrent Neural Network (RNN) and a WaveNet-style Convolutional Neural Network (CNN). The models were tested on two datasets containing speech and music, respectively. The method of recording and preprocessing the target audio data addresses the challenge of lacking a direct output line to digitize the effect of nonlinear circuits. Both model architectures successfully create a digital twin of the loudspeaker with no direct output line and stereo audio. The RNN model achieved the best result on the music dataset, while the WaveNet model achieved the best result on the speech dataset.
AlkuperäiskieliEnglanti
OtsikkoAES Europe 2023
Alaotsikko154th Audio Engineering Society Convention
KustantajaCurran Associates Inc.
ISBN (elektroninen)978-1-7138-7778-3
TilaJulkaistu - 13 toukok. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAudio Engineering Society Convention - Espoo, Suomi
Kesto: 13 toukok. 202315 toukok. 2023
Konferenssinumero: 154

Julkaisusarja

NimiAES Europe 2023: 154th Audio Engingeering Society Convention

Conference

ConferenceAudio Engineering Society Convention
LyhennettäAES
Maa/AlueSuomi
KaupunkiEspoo
Ajanjakso13/05/202315/05/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Deep Learning for Loudspeaker Digital Twin Creation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä