Deep Learning-Based Prediction of Subsurface Oil Reservoir Pressure Using Spatio-Temporal Data

Haibo Cheng, Yunpeng He, Peng Zeng, Shichao Li, Valeriy Vyatkin

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

Prediction of subsurface oil reservoir pressure are critical to hydrocarbon production. However, the accurate pressure estimation faces great challenges due to the complexity and uncertainty of reservoir. The underground seepage flow and petrophysical parameters (permeability and porosity) are important but difficult to measure in oilfield. Deep learning methods have been successfully used in reservoir engineering and oil & gas production process. In this study, the effective but inaccessible subsurface seepage fields are not used, only the spatial coordinates and temporal information are selected as model input to predict reservoir pressure. A stacked GRU-based deep learning model is proposed to map the relationship between spatio-temporal data and reservoir pressure. The proposed deep learning method is verified by using a three-dimensional reservoir model, and compared with commonly-used methods. The results show that the stacked GRU model has a better performance and higher accuracy than other deep learning or machine learning methods in pressure prediction.

AlkuperäiskieliEnglanti
OtsikkoIECON 2023 - 49th Annual Conference of the IEEE Industrial Electronics Society
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)979-8-3503-3182-0
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAnnual Conference of the IEEE Industrial Electronics Society - Singapore, Singapore, Singapore, Singapore
Kesto: 16 lokak. 202319 lokak. 2023
Konferenssinumero: 49

Julkaisusarja

NimiIECON Proceedings (Industrial Electronics Conference)
ISSN (painettu)2162-4704
ISSN (elektroninen)2577-1647

Conference

ConferenceAnnual Conference of the IEEE Industrial Electronics Society
LyhennettäIECON
Maa/AlueSingapore
KaupunkiSingapore
Ajanjakso16/10/202319/10/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Deep Learning-Based Prediction of Subsurface Oil Reservoir Pressure Using Spatio-Temporal Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä