Deep Convolutional Reconstruction For Gradient-Domain Rendering

Markus Kettunen*, Erik Harkonen, Jaakko Lehtinen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

It has been shown that rendering in the gradient domain, i.e., estimating finite difference gradients of image intensity using correlated samples, and combining them with direct estimates of pixel intensities by solving a screened Poisson problem, often offers fundamental benefits over merely sampling pixel intensities. The reasons can be traced to the frequency content of the light transport integrand and its interplay with the gradient operator. However, while they often yield state of the art performance among algorithms that are based on Monte Carlo sampling alone, gradient-domain rendering algorithms have, until now, not generally been competitive with techniques that combine Monte Carlo sampling with post-hoc noise removal using sophisticated non-linear filtering.

Drawing on the power of modern convolutional neural networks, we propose a novel reconstruction method for gradient-domain rendering. Our technique replaces the screened Poisson solver of previous gradient-domain techniques with a novel dense variant of the U-Net autoencoder, additionally taking auxiliary feature buffers as inputs. We optimize our network to minimize a perceptual image distance metric calibrated to the human visual system. Our results significantly improve the quality obtained from gradient-domain path tracing, allowing it to overtake state-of-the-art comparison techniques that denoise traditional Monte Carlo samplings. In particular, we observe that the correlated gradient samples - that offer information about the smoothness of the integrand unavailable in standard Monte Carlo sampling - notably improve image quality compared to an equally powerful neural model that does not make use of gradient samples.

AlkuperäiskieliEnglanti
Artikkeli126
Sivumäärä12
JulkaisuACM Transactions on Graphics
Vuosikerta38
Numero4
DOI - pysyväislinkit
TilaJulkaistu - heinäkuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Laitteet

Science-IT

Mikko Hakala (Manager)

Perustieteiden korkeakoulu

Laitteistot/tilat: Facility

  • Siteeraa tätä