Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography

Timo Lähivaara, Leo Kärkkäinen, Janne M.J. Huttunen, Jan S. Hesthaven

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

29 Sitaatiot (Scopus)
5 Lataukset (Pure)

Abstrakti

The feasibility of data based machine learning applied to ultrasound tomography is studied to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, a high-order discontinuous Galerkin method is considered, while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, the material porosity and tortuosity is estimated, while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirm the feasibility and accuracy of this approach.

AlkuperäiskieliEnglanti
Sivut1148-1158
Sivumäärä11
JulkaisuJournal of the Acoustical Society of America
Vuosikerta143
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 1 helmikuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä