Projekteja vuodessa
Abstrakti
This work proposes to combine neural networks with the compositional hierarchy of human bodies for efficient and complete human parsing. We formulate the approach as a neural information fusion framework. Our model assembles the information from three inference processes over the hierarchy: direct inference (directly predicting each part of a human body using image information), bottom-up inference (assembling knowledge from constituent parts), and top-down inference (leveraging context from parent nodes). The bottom-up and top-down inferences explicitly model the compositional and decompositional relations in human bodies, respectively. In addition, the fusion of multi-source information is conditioned on the inputs, i.e., by estimating and considering the confidence of the sources. The whole model is end-to-end differentiable, explicitly modeling information flows and structures. Our approach is extensively evaluated on four popular datasets, outperforming the state-of-the-arts in all cases, with a fast processing speed of 23fps. Our code and results have been released to help ease future research in this direction.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the International Conference on Computer Vision (ICCV2019) |
Kustantaja | IEEE |
Sivut | 5693-5701 |
Sivumäärä | 9 |
ISBN (elektroninen) | 978-1-7281-4803-8 |
ISBN (painettu) | 978-1-7281-4804-5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - helmik. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Computer Vision - Seoul, Etelä-Korea Kesto: 27 lokak. 2019 → 2 marrask. 2019 http://iccv2019.thecvf.com/ |
Julkaisusarja
Nimi | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
Vuosikerta | 2019-October |
ISSN (elektroninen) | 1550-5499 |
Conference
Conference | IEEE International Conference on Computer Vision |
---|---|
Lyhennettä | ICCV |
Maa/Alue | Etelä-Korea |
Kaupunki | Seoul |
Ajanjakso | 27/10/2019 → 02/11/2019 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Deep Contextual Attention for Human-Object Interaction Detection'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Päättynyt
-
MeMAD Laaksonen
Laaksonen, J., Sjöberg, M., Pehlivan Tort, S. & Laria Mantecon, H.
01/01/2018 → 31/03/2021
Projekti: EU: Framework programmes funding
-
Syvät neuroverkot näkymägraafien tuottamisessa kuvallisen multimedian semantiikan havainnoimiseksi
Laaksonen, J., Anwer, R., Sjöberg, M., Pehlivan Tort, S. & Wang, T.
01/01/2018 → 31/12/2019
Projekti: Academy of Finland: Other research funding