Decision making under uncertain segmentations

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

7 Sitaatiot (Scopus)

Abstrakti

Making decisions based on visual input is challenging because determining how the scene should be split into individual objects is often very difficult. While previous work mainly considers decision making and visual processing as two separate tasks, we argue that the inherent uncertainty in object segmentation requires an integrated approach that chooses the best decision over all possible segmentations. Our approach over-segments the visual input and combines the segments into possible objects to get a probability distribution over object compositions, represented as particles. We introduce a Markov chain Monte Carlo procedure that aims to produce exact, independent samples. In experiments, where a 6-DOF robot arm moves object hypotheses captured by an RGB-D visual sensor, our approach of probability distribution based decision making outperforms an approach which utilises the traditional most likely object composition.

AlkuperäiskieliEnglanti
OtsikkoProceedings - IEEE International Conference on Robotics and Automation
KustantajaIEEE
Sivut1303-1309
Sivumäärä7
Vuosikerta2015-June
PainosJune
ISBN (painettu)978-1-4799-6922-7
DOI - pysyväislinkit
TilaJulkaistu - 29 kesäk. 2015
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Robotics and Automation - Seattle, Yhdysvallat
Kesto: 26 toukok. 201530 toukok. 2015

Julkaisusarja

Nimi
ISSN (painettu)2152-4092

Conference

ConferenceIEEE International Conference on Robotics and Automation
LyhennettäICRA
Maa/AlueYhdysvallat
KaupunkiSeattle
Ajanjakso26/05/201530/05/2015

Sormenjälki

Sukella tutkimusaiheisiin 'Decision making under uncertain segmentations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä