De-Sequentialized Monte Carlo: a parallel-in-time particle smoother

Adrien Corenflos*, Simo Särkkä, Nicolas Chopin

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

43 Lataukset (Pure)


Particle smoothers are SMC (Sequential Monte Carlo) algorithms designed to approximate the joint distribution of the states given observations from a state-space model. We propose dSMC (de-Sequentialized Monte Carlo), a new particle smoother that is able to process T observations in O(log T) time on parallel architectures. This compares favorably with standard particle smoothers, the complexity of which is linear in T. We derive Lp convergence results for dSMC, with an explicit upper bound, polynomial in T. We then discuss how to reduce the variance of the smoothing estimates computed by dSMC by (i) designing good proposal distributions for sampling the particles at the initialization
of the algorithm, as well as by (ii) using lazy resampling to increase the number of particles used in dSMC. Finally, we design a particle Gibbs sampler based on dSMC, which is able to perform parameter inference in a state-space model at a O(log T) cost on parallel hardware.
JulkaisuJournal of Machine Learning Research
TilaJulkaistu - 1 elok. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


Sukella tutkimusaiheisiin 'De-Sequentialized Monte Carlo: a parallel-in-time particle smoother'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä