Abstrakti

Approximate Bayesian inference estimates descriptors of an intractable target distribution - in essence, an optimization problem within a family of distributions. For example, Langevin dynamics (LD) extracts asymptotically exact samples from a diffusion process because the time evolution of its marginal distributions constitutes a curve that minimizes the KL-divergence via steepest descent in the Wasserstein space. Parallel to LD, Stein variational gradient descent (SVGD) similarly minimizes the KL, albeit endowed with a novel Stein-Wasserstein distance, by deterministically transporting a set of particle samples, thus de-randomizes the stochastic diffusion process. We propose de-randomized kernel-based particle samplers to all diffusion-based samplers known as MCMC dynamics. Following previous work in interpreting MCMC dynamics, we equip the Stein-Wasserstein space with a fiber-Riemannian Poisson structure, with the capacity of characterizing a fiber-gradient Hamiltonian flow that simulates MCMC dynamics. Such dynamics discretizes into generalized SVGD (GSVGD), a Stein-type deterministic particle sampler, with particle updates coinciding with applying the diffusion Stein operator to a kernel function. We demonstrate empirically that GSVGD can de-randomize complex MCMC dynamics, which combine the advantages of auxiliary momentum variables and Riemannian structure, while maintaining the high sample quality from an interacting particle system.
AlkuperäiskieliEnglanti
OtsikkoAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
KustantajaNeural Information Processing Systems Foundation
Sivut17507-17517
Sivumäärä11
ISBN (elektroninen)9781713845393
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Neural Information Processing Systems - Virtual, Online
Kesto: 6 jouluk. 202114 jouluk. 2021
Konferenssinumero: 35
https://neurips.cc

Julkaisusarja

NimiAdvances in Neural Information Processing Systems
KustantajaNeural Information Processing Systems Foundation
Vuosikerta21
ISSN (painettu)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
KaupunkiVirtual, Online
Ajanjakso06/12/202114/12/2021
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'De-randomizing MCMC dynamics with the diffusion Stein operator'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä