Projekteja vuodessa
Abstrakti
Frequently, parameters in optimization models are subject to a high level of uncertainty coming from several sources and, as such, assuming them to be deterministic can lead to solutions that are infeasible in practice. Robust optimization is a computationally efficient approach that generates solutions that are feasible for realizations of uncertain parameters near the nominal value. This paper develops a data-driven robust optimization approach for the scheduling of a straight pipeline connecting a single refinery with multiple distribution centers, considering uncertainty in the injection rate. For that, we apply support vector clustering to learn an uncertainty set for the robust version of the deterministic model. We compare the performance of our proposed robust model against one utilizing a standard robust optimization approach and conclude that data-driven robust solutions are less conservative.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 108924 |
Sivut | 1-14 |
Sivumäärä | 14 |
Julkaisu | Computers and Chemical Engineering |
Vuosikerta | 193 |
Varhainen verkossa julkaisun päivämäärä | 20 marrask. 2024 |
DOI - pysyväislinkit | |
Tila | Julkaistu - helmik. 2025 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Data-driven robust optimization for pipeline scheduling under flow rate uncertainty'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
Oliveira EasyDR: EasyDR - Enabling household scale demand response through easy to use open source approach
Oliveira, F. (Vastuullinen tutkija)
EU The Recovery and Resilience Facility (RRF)
01/01/2022 → 31/12/2024
Projekti: RCF Academy Project targeted call