Data-Driven Human Factors Enabled Digital Twin

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

This paper presents a methodology for increasing human-centric production systems flexibility using human factors-enabled digital twins. The paper includes an analysis of the relevant projects that incorporate human-related data collection and processing. The proposed system is capable of collecting human factors-related data from various sources and then use a decision-making algorithm to schedule the tasks according to assessed human operator conditions in real-time. The formed Digital Twin is able to depict the condition of the labourer and production system status in real-time using Visual Components simulation environment. Shown results prove that existing production systems are capable of adapting to the changing condition of the worker flexibly, optimising workflow, distributing tasks with AGVs and cobots, and applying changes in workplace ergonomics to achieve better safety and performance of the worker.

AlkuperäiskieliEnglanti
OtsikkoIECON 2023 - 49th Annual Conference of the IEEE Industrial Electronics Society
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)979-8-3503-3182-0
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAnnual Conference of the IEEE Industrial Electronics Society - Singapore, Singapore, Singapore, Singapore
Kesto: 16 lokak. 202319 lokak. 2023
Konferenssinumero: 49

Julkaisusarja

NimiIECON Proceedings (Industrial Electronics Conference)
ISSN (painettu)2162-4704
ISSN (elektroninen)2577-1647

Conference

ConferenceAnnual Conference of the IEEE Industrial Electronics Society
LyhennettäIECON
Maa/AlueSingapore
KaupunkiSingapore
Ajanjakso16/10/202319/10/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Data-Driven Human Factors Enabled Digital Twin'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä