Data anonymization as a vector quantization problem: Control over privacy for health data

Yoan Miche*, Ian Oliver, Silke Holtmanns, Aapo Kalliola, Anton Akusok, Amaury Lendasse, Kaj Mikael Björk

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

4 Sitaatiot (Scopus)

Abstrakti

This paper tackles the topic of data anonymization from a vector quantization point of view. The admitted goal in this work is to provide means of performing data anonymization to avoid single individual or group re-identification from a data set, while maintaining as much as possible (and in a very specific sense) data integrity and structure. The structure of the data is first captured by clustering (with a vector quantization approach), and we propose to use the properties of this vector quantization to anonymize the data. Under some assumptions over possible computations to be performed on the data, we give a framework for identifying and “pushing back outliers in the crowd”, in this clustering sense, as well as anonymizing cluster members while preserving cluster-level statistics and structure as defined by the assumptions (density, pairwise distances, cluster shape and members…).

AlkuperäiskieliEnglanti
OtsikkoAvailability, Reliability, and Security in Information Systems - IFIP WG 8.4, 8.9, TC 5 International Cross-Domain Conference, CD-ARES 2016 and Workshop on Privacy Aware Machine Learning for Health Data Science, PAML 2016 Salzburg, Proceedings
ToimittajatFrancesco Buccafurri, Andreas Holzinger, Peter Kieseberg, A. Min Tjoa, Edgar Weippl
KustantajaSpringer Verlag
Sivut193-203
Sivumäärä11
Vuosikerta9817
ISBN (elektroninen)978-3-319-45507-5
ISBN (painettu)9783319455068
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIFIP WG 8.4, 8.9, TC 5 International Cross-Domain Conference, CD-ARES 2016 and Workshop on Privacy Aware Machine Learning for Health Data Science, PAML 2016 - Salzburg, Itävalta
Kesto: 31 elokuuta 20162 syyskuuta 2016

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta9817
ISSN (painettu)03029743
ISSN (elektroninen)16113349

Conference

ConferenceIFIP WG 8.4, 8.9, TC 5 International Cross-Domain Conference, CD-ARES 2016 and Workshop on Privacy Aware Machine Learning for Health Data Science, PAML 2016
Maa/AlueItävalta
KaupunkiSalzburg
Ajanjakso31/08/201602/09/2016

Sormenjälki

Sukella tutkimusaiheisiin 'Data anonymization as a vector quantization problem: Control over privacy for health data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä