Crystal Structure Prediction of Magnetic Transition-Metal Oxides by Using Evolutionary Algorithm and Hybrid DFT Methods

Mikhail Kuklin, Antti Karttunen

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

19 Sitaatiot (Scopus)
628 Lataukset (Pure)

Abstrakti

Although numerous crystal structures have been successfully predicted by using currently available computational techniques, prediction of strongly correlated systems such as transition-metal oxides remains a challenge. To overcome this problem, we have interfaced evolutionary algorithm-based USPEX method with the CRYSTAL code, enabling the use of Gaussian-type localized atomic basis sets and hybrid density functional (DFT) methods for the prediction of crystal structures. We report successful crystal structure predictions of several transition-metal oxides (NiO, CoO, α-Fe2O3, V2O3, and CuO) with correct atomic magnetic moments, spin configurations, and structures by using the USPEX method in combination with the CRYSTAL code and Perdew-Burke-Ernzerhof (PBE0) hybrid functional. Our benchmarking results demonstrate that USPEX + hybrid DFT is a suitable combination to reliably predict the magnetic structures of strongly correlated materials. Copyright © 2018 American Chemical Society.
AlkuperäiskieliEnglanti
Sivut24949-24957
JulkaisuJournal of Physical Chemistry C
Vuosikerta122
Numero43
Varhainen verkossa julkaisun päivämäärä2018
DOI - pysyväislinkit
TilaJulkaistu - 1 marrask. 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Crystal Structure Prediction of Magnetic Transition-Metal Oxides by Using Evolutionary Algorithm and Hybrid DFT Methods'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä