Crowdsourcing for Information Visualization: Promises and Pitfalls

Rita Borgo, Bongshin Lee, Benjamin Bach, Sara Fabrikant, Radu Jianu, Andreas Kerren, Stephen Kobourov, Fintan McGee, Luana Micallef, Tatiana von Landesberger, Katrin Ballweg, Stephan Diehl, Paolo Simonetto, Michelle Zhou

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaChapterScientificvertaisarvioitu

Abstrakti

Crowdsourcing offers great potential to overcome the limitations of controlled lab studies. To guide future designs of crowdsourcing-based studies for visualization, we review visualization research that has attempted to leverage crowdsourcing for empirical evaluations of visualizations. We discuss six core aspects for successful employment of crowdsourcing in empirical studies for visualization – participants, study design, study procedure, data, tasks, and metrics & measures. We then present four case studies, discussing potential mechanisms to overcome common pitfalls. This chapter will help the visualization community understand how to effectively and efficiently take advantage of the exciting potential crowdsourcing has to offer to support empirical visualization research.
AlkuperäiskieliEnglanti
OtsikkoEvaluation in the Crowd: Crowdsourcing and Human-Centered Experiments
AlaotsikkoDagstuhl Seminar 15481, Dagstuhl Castle, Germany, November 22 – 27, 2015 Revised Contributions
ToimittajatDaniel Archambault, Helen Purchase, Tobias Hossfeld
KustantajaSpringer
Sivut96-138
ISBN (elektroninen)978-3-319-66435-4
ISBN (painettu)978-3-319-66434-7
TilaJulkaistu - 2017
OKM-julkaisutyyppiA3 Kirjan tai muun kokoomateoksen osa

Julkaisusarja

NimiLecture Notes in Computer Science
KustantajaSpringer
Vuosikerta10264
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Sormenjälki

Sukella tutkimusaiheisiin 'Crowdsourcing for Information Visualization: Promises and Pitfalls'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä