Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification

Amandeep Kumar*, Ankan Kumar Bhunia, Sanath Narayan, Hisham Cholakkal, Rao Muhammad Anwer, Jorma Laaksonen, Fahad Shahbaz Khan

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

In this work, we propose a few-shot colorectal tissue image generation method for addressing the scarcity of histopathological training data for rare cancer tissues. Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images. Within our XM-GAN, a novel controllable fusion block densely aggregates local regions of reference images based on their similarity to those in the base image, resulting in locally consistent features. To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images. We evaluate our few-shot colorectral tissue image generation by performing extensive qualitative, quantitative and subject specialist (pathologist) based evaluations. Specifically, in specialist-based evaluation, pathologists could differentiate between our XM-GAN generated tissue images and real images only $$55\%$$ time. Moreover, we utilize these generated images as data augmentation to address the few-shot tissue image classification task, achieving a gain of 4.4% in terms of mean accuracy over the vanilla few-shot classifier. Code: https://github.com/VIROBO-15/XM-GAN.

AlkuperäiskieliEnglanti
OtsikkoMedical Image Computing and Computer Assisted Intervention – MICCAI 2023
AlaotsikkoProceedings of 26th International Conference
ToimittajatHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
KustantajaSpringer
Sivut128-137
Sivumäärä10
ISBN (painettu)978-3-031-43897-4
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Medical Image Computing and Computer Assisted Intervention - Vancouver, Kanada
Kesto: 8 lokak. 202312 lokak. 2023
Konferenssinumero: 26

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta14222 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Conference on Medical Image Computing and Computer Assisted Intervention
LyhennettäMICCAI
Maa/AlueKanada
KaupunkiVancouver
Ajanjakso08/10/202312/10/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Cross-Modulated Few-Shot Image Generation for Colorectal Tissue Classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä