Coupled Feature Learning Via Structured Convolutional Sparse Coding for Multimodal Image Fusion

Farshad G. Veshki, Sergiy A. Vorobyov

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

18 Sitaatiot (Scopus)
86 Lataukset (Pure)

Abstrakti

A novel method for learning correlated features in multimodal images based on convolutional sparse coding with applications to image fusion is presented. In particular, the correlated features are captured as coupled filters in convolutional dictionaries. At the same time, the shared and independent features are approximated using separate convolutional sparse codes and a common dictionary. The resulting optimization problem is addressed using alternating direction method of multipliers. The coupled filters are fused based on a maximum-variance rule, and a maximum-absolute-value rule is used to fuse the sparse codes. The proposed method does not entail any prelearning stage. The experimental evaluations using medical and infrared-visible image datasets demonstrate the superiority of our method compared to state-of-the-art algorithms in terms of preserving the details and local intensities as well as improving objective metrics.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
KustantajaIEEE
Sivut2500-2504
Sivumäärä5
ISBN (elektroninen)978-1-6654-0540-9
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Singapore, Singapore
Kesto: 23 toukok. 202227 toukok. 2022

Julkaisusarja

NimiIEEE International Conference on Acoustics, Speech and Signal Processing
Vuosikerta2022-May
ISSN (painettu)1520-6149

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueSingapore
KaupunkiSingapore
Ajanjakso23/05/202227/05/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Coupled Feature Learning Via Structured Convolutional Sparse Coding for Multimodal Image Fusion'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä