Abstrakti
Given as input two n-element sets A, B ⊆ {0, 1}d with d = c log n ≤ (log n)2/(log log n)4 and a target t ∈ {0, 1,⋯, d}, we show how to count the number of pairs (x, y) ∈ A × B with integer inner product 〉x, y〈 = t deterministically, in n2/2Ω(√log n log log n/(c log2 c)) time. This demonstrates that one can solve this problem in deterministic subquadratic time almost up to log2 n dimensions, nearly matching the dimension bound of a subquadratic randomized detection algorithm of Alman and Williams [FOCS 2015]. We also show how to modify their randomized algorithm to count the pairs w.h.p., to obtain a fast randomized algorithm. Our deterministic algorithm builds on a novel technique of reconstructing a function from sum-aggregates by prime residues, or modular tomography, which can be seen as an additive analog of the Chinese Remainder Theorem. As our second contribution, we relate the fine-grained complexity of the task of counting of vector pairs by inner product to the task of computing a zero-one matrix permanent over the integers.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021 |
Toimittajat | Nikhil Bansal, Emanuela Merelli, James Worrell |
Kustantaja | Schloss Dagstuhl-Leibniz-Zentrum für Informatik |
Sivumäärä | 21 |
ISBN (elektroninen) | 9783959771955 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 heinäk. 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | International Colloquium on Automata, Languages and Programming - Virtual, Online, Glasgow, Iso-Britannia Kesto: 12 heinäk. 2021 → 16 heinäk. 2021 Konferenssinumero: 48 |
Julkaisusarja
Nimi | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
Kustantaja | Dagstuhl Publishing |
Vuosikerta | 198 |
ISSN (painettu) | 1868-8969 |
Conference
Conference | International Colloquium on Automata, Languages and Programming |
---|---|
Lyhennettä | ICALP |
Maa/Alue | Iso-Britannia |
Kaupunki | Glasgow |
Ajanjakso | 12/07/2021 → 16/07/2021 |