Counting short vector pairs by inner product and relations to the permanent

Andreas Björklund, Petteri Kaski

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

10 Lataukset (Pure)


Given as input two n-element sets A, B ⊆ {0, 1}d with d = c log n ≤ (log n)2/(log log n)4 and a target t ∈ {0, 1,⋯, d}, we show how to count the number of pairs (x, y) ∈ A × B with integer inner product 〉x, y〈 = t deterministically, in n2/2Ω(√log n log log n/(c log2 c)) time. This demonstrates that one can solve this problem in deterministic subquadratic time almost up to log2 n dimensions, nearly matching the dimension bound of a subquadratic randomized detection algorithm of Alman and Williams [FOCS 2015]. We also show how to modify their randomized algorithm to count the pairs w.h.p., to obtain a fast randomized algorithm. Our deterministic algorithm builds on a novel technique of reconstructing a function from sum-aggregates by prime residues, or modular tomography, which can be seen as an additive analog of the Chinese Remainder Theorem. As our second contribution, we relate the fine-grained complexity of the task of counting of vector pairs by inner product to the task of computing a zero-one matrix permanent over the integers.

Otsikko48th International Colloquium on Automata, Languages, and Programming, ICALP 2021
ToimittajatNikhil Bansal, Emanuela Merelli, James Worrell
KustantajaSchloss Dagstuhl-Leibniz-Zentrum für Informatik
ISBN (elektroninen)9783959771955
DOI - pysyväislinkit
TilaJulkaistu - 1 heinäk. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Colloquium on Automata, Languages and Programming - Virtual, Online, Glasgow, Iso-Britannia
Kesto: 12 heinäk. 202116 heinäk. 2021
Konferenssinumero: 48


NimiLeibniz International Proceedings in Informatics, LIPIcs
KustantajaDagstuhl Publishing
ISSN (painettu)1868-8969


ConferenceInternational Colloquium on Automata, Languages and Programming


Sukella tutkimusaiheisiin 'Counting short vector pairs by inner product and relations to the permanent'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä