Correlation-based Graph Smoothness Measures In Graph Signal Processing

Jari Miettinen, Sergiy A. Vorobyov, Esa Ollila, Xinjue Wang

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

42 Lataukset (Pure)

Abstrakti

Graph smoothness is an important prior used for designing sampling strategies for graph signals as well as for regularizing the problem of graph learning. Additionally, smoothness is an appropriate assumption for graph signal processing (GSP) tasks such as filtering or signal recovery from samples. The most popular measure of smoothness is the quadratic form of the Laplacian, which naturally follows from the factor analysis approach. This paper presents a novel smoothness measure based on the graph correlation. The proposed measure enhances the applicability of graph smoothness measures across a variety of GSP tasks, by facilitating interoperability and generalizing across shift operators.

AlkuperäiskieliEnglanti
Otsikko31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings
KustantajaEuropean Signal Processing Conference (EUSIPCO)
Sivut1848-1852
Sivumäärä5
ISBN (elektroninen)978-9-4645-9360-0
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Helsinki, Suomi
Kesto: 4 syysk. 20238 syysk. 2023
Konferenssinumero: 31
https://eusipco2023.org/

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491

Conference

ConferenceEuropean Signal Processing Conference
LyhennettäEUSIPCO
Maa/AlueSuomi
KaupunkiHelsinki
Ajanjakso04/09/202308/09/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Correlation-based Graph Smoothness Measures In Graph Signal Processing'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä