Copula-based algorithm for generating bursty time series

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

  • Asia Pacific Center for Theoretical Physics
  • Pohang University of Science and Technology

Kuvaus

Dynamical processes in various natural and social phenomena have been described by a series of events or event sequences showing non-Poissonian, bursty temporal patterns. Temporal correlations in such bursty time series can be understood not only by heterogeneous interevent times (IETs) but also by correlations between IETs. Modeling and simulating various dynamical processes requires us to generate event sequences with a heavy-tailed IET distribution and memory effects between IETs. For this, we propose a Farlie-Gumbel-Morgenstern copula-based algorithm for generating event sequences with correlated IETs when the IET distribution and the memory coefficient between two consecutive IETs are given. We successfully apply our algorithm to the cases with heavy-tailed IET distributions. We also compare our algorithm to the existing shuffling method to find that our algorithm outperforms the shuffling method for some cases. Our copula-based algorithm is expected to be used for more realistic modeling of various dynamical processes.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli022307
Sivut1-6
JulkaisuPhysical Review E
Vuosikerta100
Numero2
TilaJulkaistu - 14 elokuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 36530816