Abstrakti

We introduce a cooperative Bayesian optimization problem for optimizing black-box functions of two variables where two agents choose together at which points to query the function but have only control over one variable each. This setting is inspired by human-AI teamwork, where an AI-assistant helps its human user solve a problem, in this simplest case, collaborative optimization. We formulate the solution as sequential decision-making, where the agent we control models the user as a computationally rational agent with prior knowledge about the function. We show that strategic planning of the queries enables better identification of the global maximum of the function as long as the user avoids excessive exploration. This planning is made possible by using Bayes Adaptive Monte Carlo planning and by endowing the agent with a user model that accounts for conservative belief updates and exploratory sampling of the points to query.

AlkuperäiskieliEnglanti
OtsikkoMachine Learning and Knowledge Discovery in Databases : Research Track - European Conference, ECML PKDD 2023, Proceedings
ToimittajatDanai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, Francesco Bonchi
KustantajaSpringer
Sivut475-490
Sivumäärä16
ISBN (painettu)978-3-031-43411-2
DOI - pysyväislinkit
TilaJulkaistu - syysk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - Turin, Italia
Kesto: 18 syysk. 202322 syysk. 2023

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
KustantajaSpringer
Vuosikerta14169 LNAI
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
LyhennettäECML PKDD
Maa/AlueItalia
KaupunkiTurin
Ajanjakso18/09/202322/09/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Cooperative Bayesian Optimization for Imperfect Agents'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä