Cooling Thermal Comfort and Efficiency Parameters of Ceiling Panels, Underfloor Cooling, Fan-Assisted Radiators, and Fan Coil

Karl-Villem Vosa*, Andrea Ferrantelli, Jarek Kurnitski

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
6 Lataukset (Pure)

Abstrakti

Climate change has brought a compelling need for cooling living spaces to the attention of researchers as well as construction professionals. The problem of overheating enclosures is now exacerbated in traditionally affected areas and is also affecting countries that were previously less prone to the issue. In this paper, we address measurements of thermal comfort and cooling emission efficiency parameters for different devices: ceiling panels, underfloor cooling, fan-assisted radiators, and fan coil. These devices were tested in low and high cooling capacities of up to 40 W/m(2) while also featuring heating dummies to imitate internal heat gains. Air temperatures were measured at different heights, allowing to evaluate the thermal stratification with high accuracy. Thermal comfort differences of the tested systems were quantified by measuring both air velocities and operative temperatures at points of occupancy. In summary, the best-performing cooling devices for the studied cooling applications were the ceiling panels and fan radiators, followed by underfloor cooling, with a limitation of stratification. Because of the strong jet, fan coil units did not achieve thermal comfort within the whole occupied zone. The results can be utilized in future studies for cooling emission efficiency and energy consumption analyses of the different cooling devices.

AlkuperäiskieliEnglanti
Artikkeli4156
Sivumäärä19
JulkaisuEnergies
Vuosikerta15
Numero11
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Cooling Thermal Comfort and Efficiency Parameters of Ceiling Panels, Underfloor Cooling, Fan-Assisted Radiators, and Fan Coil'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä