Convex Relaxation for Maximum-Likelihood Network Localization Using Distance and Direction Data

Hassan Naseri, Visa Koivunen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

A reliable and accurate positioning technology is crucial for a large variety of wireless services and applications. High-resolution estimates of distance and direction data are available in most current and emerging wireless systems. Combining these two sensing modalities can improve the estimation performance and identifiability of the localization problem. However, the problem of cooperative localization using joint distance and direction estimates is still a largely unexplored problem. A novel convex relaxation of the maximum likelihood (ML) estimator for this problem called Semidefinite Programming Hybrid Localization (SDHL) algorithm is proposed in this paper. Numerical results are presented showing that the localization error is significantly reduced in almost every simulation scenario compared to the state of the art. This improvement in localization performance is due to the close approximation of the ML estimator.

AlkuperäiskieliEnglanti
Otsikko2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2018
KustantajaIEEE
Vuosikerta2018-June
ISBN (elektroninen)9781538635124
DOI - pysyväislinkit
TilaJulkaistu - 24 elok. 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Workshop on Signal Processing Advances in Wireless Communications - Kalamata, Kreikka
Kesto: 25 kesäk. 201828 kesäk. 2018
Konferenssinumero: 19

Julkaisusarja

NimiIEEE International Workshop on Signal Processing Advances in Wireless Communications
ISSN (elektroninen)1948-3252

Workshop

WorkshopIEEE International Workshop on Signal Processing Advances in Wireless Communications
LyhennettäSPAWC
Maa/AlueKreikka
KaupunkiKalamata
Ajanjakso25/06/201828/06/2018

Sormenjälki

Sukella tutkimusaiheisiin 'Convex Relaxation for Maximum-Likelihood Network Localization Using Distance and Direction Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä