Converting Series Biquad Filters into Delayed Parallel Form: Application to Graphic Equalizers

Juho Liski*, Balazs Bank, Julius O. Smith, Vesa Välimäki

*Tämän työn vastaava kirjoittaja

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    18 Sitaatiot (Scopus)
    837 Lataukset (Pure)

    Abstrakti

    Digital filter transfer functions can be converted between the direct form and parallel connections of elementary sections, typically second-order ('biquad') sections. The conversion from direct to parallel form is performed using a partial fraction expansion, which usually requires long division of polynomials when expanding proper and improper transfer functions. This paper focuses on the conversion of a series of biquad sections to the parallel form, and proposes a novel way to implement the partial-fraction expansion without the use of long division. Additionally, the resulting structure is the delayed parallel form in which the section gains remain small. The new design and previous methods are compared in a case study on graphic equalizer design. The delayed parallel filter is shown to use the same number of operations as the series form during filtering. The conversion of a recently proposed series graphic equalizer into the delayed parallel form leads to an improved parallel graphic equalizer design relative to all known prior approaches. The proposed conversion technique is widely applicable to the design of parallel infinite impulse response filters, which are becoming popular as they are well suited to implementation using parallel computers.

    AlkuperäiskieliEnglanti
    Artikkeli8723568
    Sivut3785-3795
    Sivumäärä11
    JulkaisuIEEE Transactions on Signal Processing
    Vuosikerta67
    Numero14
    DOI - pysyväislinkit
    TilaJulkaistu - 15 heinäk. 2019
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Sormenjälki

    Sukella tutkimusaiheisiin 'Converting Series Biquad Filters into Delayed Parallel Form: Application to Graphic Equalizers'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä