Contour tree connectivity of binary images from algebraic graph theory

Dogu Baran Aydogan, Jari Hyttinen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

6 Sitaatiot (Scopus)


We propose a novel feature for binary images that provides connectivity information by taking into account the proximity of connected components and cavities. We start by applying the Euclidean distance transform and then we compute the contour tree. Finally, we assign the normalized algebraic connectivity of a contour tree derivative as a feature for connectivity. Our algorithm can be applied to any dimensions of data as well as topology. And the resultant connectivity index is a single real number between 0 and 1. We test and demonstrate interesting properties of our approach on various 2D and 3D images. With its intriguing properties, the proposed index is widely applicable for studying binary morphology. Especially, it is complementary to Euler number for studying connectivity of microstructures of materials such as soil, paper, filter, food products as well as biomaterials and biological tissues.

Otsikko2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings
DOI - pysyväislinkit
TilaJulkaistu - 1 joulukuuta 2013
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Conference on Image Processing - Melbourne, Austraalia
Kesto: 15 syyskuuta 201318 syyskuuta 2013
Konferenssinumero: 20


ConferenceIEEE International Conference on Image Processing


Sukella tutkimusaiheisiin 'Contour tree connectivity of binary images from algebraic graph theory'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä