Abstrakti
Model-based reinforcement learning (MBRL) approaches rely on discrete-time state transition models whereas physical systems and the vast majority of control tasks operate in continuous-time. To avoid time-discretization approximation of the underlying process, we propose a continuous-time MBRL framework based on a novel actor-critic method. Our approach also infers the unknown state evolution differentials with Bayesian neural ordinary differential equations (ODE) to account for epistemic uncertainty. We implement and test our method on a new ODE-RL suite that explicitly solves continuous-time control systems. Our experiments illustrate that the model is robust against irregular and noisy data, and can solve classic control problems in a sample-efficient manner.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 38th International Conference on Machine Learning, ICML 2021 |
Kustantaja | JMLR |
Sivut | 12009-12018 |
Tila | Julkaistu - 21 heinäk. 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Machine Learning - Virtual, Online Kesto: 18 heinäk. 2021 → 24 heinäk. 2021 Konferenssinumero: 38 |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Kustantaja | PMLR |
Vuosikerta | 139 |
ISSN (elektroninen) | 2640-3498 |
Conference
Conference | International Conference on Machine Learning |
---|---|
Lyhennettä | ICML |
Kaupunki | Virtual, Online |
Ajanjakso | 18/07/2021 → 24/07/2021 |