Continuous-Discrete von Mises-Fisher Filtering on S2 for Reference Vector Tracking

Filip Tronarp, Roland Hostettler, Simo Särkkä

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

5 Sitaatiot (Scopus)
198 Lataukset (Pure)


This paper is concerned with tracking of reference vectors in the continuous-discrete-time setting. For this end, an Itô stochastic differential equation, using the gyroscope as input, is formulated that explicitly accounts for the geometry of the problem. The filtering problem is solved by restricting the prediction and filtering distributions to the von Mises-Fisher class, resulting in ordinary differential equations for the parameters. A strategy for approximating Bayesian updates and marginal likelihoods is developed for the class of conditionally spherical measurement distributions' which is realistic for sensors such as accelerometers and magnetometers, and includes robust likelihoods. Furthermore, computationally efficient and numerically robust implementations are presented. The method is compared to other state-of-the-art filters in simulation experiments involving tracking of the local gravity vector. Additionally, the methodology is demonstrated in the calibration of a smartphone's accelerometer and magnetometer. Lastly, the method is compared to state-of-the-art in gravity vector tracking for smartphones in two use cases, where it is shown to be more robust to unmodeled accelerations.

OtsikkoProceedings of the 21st International Conference on Information Fusion, FUSION 2018
ISBN (painettu)9780996452762
DOI - pysyväislinkit
TilaJulkaistu - 5 syysk. 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Information Fusion - Cambridge, Iso-Britannia
Kesto: 10 heinäk. 201813 heinäk. 2018
Konferenssinumero: 21


ConferenceInternational Conference on Information Fusion


Sukella tutkimusaiheisiin 'Continuous-Discrete von Mises-Fisher Filtering on S2 for Reference Vector Tracking'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä