Continuous Control Monte Carlo Tree Search Informed by Multiple Experts

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

Kuvaus

Efficient algorithms for 3D character control in continuous control setting remain an open problem in spite of the remarkable recent advances in the field. We present a sampling-based model-predictive controller that comes in the form of a Monte Carlo tree search (MCTS). The tree search utilizes information from multiple sources including two machine learning models. This allows rapid development of complex skills such as 3D humanoid locomotion with less than a million simulation steps, in less than a minute of computing on a modest personal computer. We demonstrate locomotion of 3D characters with varying topologies under disturbances such as heavy projectile hits and abruptly changing target direction. In this paper we also present a new way to combine information from the various sources such that minimal amount of information is lost. We furthermore extend the neural network, involved in the algorithm, to represent stochastic policies. Our approach yields a robust control algorithm that is easy to use. While learning, the algorithm runs in near real-time, and after learning the sampling budget can be reduced for real-time operation.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut2540-2553
JulkaisuIEEE Transactions on Visualization and Computer Graphics
Vuosikerta25
Numero8
Varhainen verkossa julkaisun päivämäärä29 kesäkuuta 2018
TilaJulkaistu - 2 heinäkuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 26483569