Projekteja vuodessa
Abstrakti
For several emerging technologies such as augmented reality, autonomous driving and robotics, visual localization is a critical component. Directly regressing camera pose/3D scene coordinates from the input image using deep neural networks has shown great potential. However, such methods assume a stationary data distribution with all scenes simultaneously available during training. In this paper, we approach the problem of visual localization in a continual learning setup -- whereby the model is trained on scenes in an incremental manner. Our results show that similar to the classification domain, non-stationary data induces catastrophic forgetting in deep networks for visual localization. To address this issue, a strong baseline based on storing and replaying images from a fixed buffer is proposed. Furthermore, we propose a new sampling method based on coverage score (Buff-CS) that adapts the existing sampling strategies in the buffering process to the problem of visual localization. Results demonstrate consistent improvements over standard buffering methods on two challenging datasets -- 7Scenes, 12Scenes, and also 19Scenes by combining the former scenes.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2021 International Conference on Computer Vision, ICCV |
Kustantaja | IEEE |
Sivut | 3232-3242 |
Sivumäärä | 11 |
ISBN (elektroninen) | 978-1-6654-2812-5 |
ISBN (painettu) | 978-1-6654-2813-2 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Computer Vision - Virtual, Online Kesto: 11 lokak. 2021 → 17 lokak. 2021 |
Julkaisusarja
Nimi | IEEE International Conference on Computer Vision |
---|---|
Kustantaja | IEEE |
ISSN (painettu) | 1550-5499 |
ISSN (elektroninen) | 2380-7504 |
Conference
Conference | International Conference on Computer Vision |
---|---|
Lyhennettä | ICCV |
Kaupunki | Virtual, Online |
Ajanjakso | 11/10/2021 → 17/10/2021 |
Sormenjälki
Sukella tutkimusaiheisiin 'Continual Learning for Image-Based Camera Localization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Päättynyt
-
REPEAT: Autonomisten laitteiden luotettava ja tehokas tietokonenäkö
Kannala, J., Ye, R., Boney, R., Li, X., Melekhov, I., Fang, J., Zhang, Y. & Krahn, M.
01/01/2020 → 30/09/2023
Projekti: Academy of Finland: Other research funding
-
Kompaktit ja tehokkaat syvät neuroverkot laajasti läsnäolevaan tietokonenäköön
Kannala, J., Ylioinas, J., Laskar, Z., Tigunova, A., Wang, S., Zhao, Y., Verma, V. & Shershebnev, A.
01/09/2017 → 31/08/2021
Projekti: Academy of Finland: Other research funding