Continual Learning and Unknown Object Discovery in 3D Scenes via Self-distillation

Mohamed El Amine Boudjoghra*, Jean Lahoud, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Fahad Shahbaz Khan

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Open-world 3D instance segmentation is a recently introduced problem with diverse applications, notably in continually learning embodied agents. This task involves segmenting unknown instances and learning new instances when their labels are introduced. However, prior research in the open-world domain has traditionally addressed the two sub-problems, namely continual learning and unknown object identification, separately. This approach has resulted in limited performance on unknown instances and cannot effectively mitigate catastrophic forgetting. Additionally, these methods bypass the utilization of the information stored in the previous version of the continual learning model, instead relying on a dedicated memory to store historical data samples, which inevitably leads to an expansion of the memory budget. In this paper, we argue that continual learning and unknown object identification are desired to be tackled in conjunction. To this end, we propose a new exemplar-free approach for 3D continual learning and unknown object discovery through continual self-distillation. Our approach, named OpenDistill3D, leverages the pseudo-labels generated by the model from the preceding task to improve the unknown predictions during training while simultaneously mitigating catastrophic forgetting. By integrating these pseudo-labels into the continual learning process, we achieve enhanced performance in handling unknown objects. We validate the efficacy of the proposed approach via comprehensive experiments on various splits of the ScanNet200 dataset, showcasing superior performance in contin vual learning and unknown object retrieval compared to the state-of-the-art. Code and model are available at github.com/aminebdj/OpenDistill3D.

AlkuperäiskieliEnglanti
OtsikkoComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
ToimittajatAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
KustantajaSpringer
Sivut416-431
Sivumäärä16
ISBN (elektroninen)978-3-031-73464-9
ISBN (painettu)978-3-031-73463-2
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Conference on Computer Vision - Milano, Italia
Kesto: 29 syysk. 20244 lokak. 2024
Konferenssinumero: 18

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
KustantajaSpringer
Vuosikerta15131 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceEuropean Conference on Computer Vision
LyhennettäECCV
Maa/AlueItalia
KaupunkiMilano
Ajanjakso29/09/202404/10/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Continual Learning and Unknown Object Discovery in 3D Scenes via Self-distillation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä