Context Changes and the Performance of a Learning Human-in-the-loop System: A Case Study of Automatic Speech Recognition Use in Medical Transcription

Tomasz Mucha, Jane Seppälä, Henrik Puraskivi

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

10 Lataukset (Pure)

Abstrakti

The paper presents how organizational practices enable the improvement and maintenance of task performance in a learning human-in-the-loop system exposed to a wide range of context changes. We investigate how the case company tripled the efficiency of medical transcribers by leveraging its machine learning-based automatic speech recognition technology. We find that the focal system operated across stable, drifting, and jumping contexts. Despite changes, it continued to improve or maintained performance thanks to two sets of organizational practices aligning it with the context: extending and refining. This paper makes two key contributions: It shows the importance of considering context changes in the design and operation of learning human-in-the-loop systems. Our empirical findings help with resolving some contradictory outcomes of the recent conceptual work. Secondly, we show that context alignment practices are situated at the sociotechnical system level and, thus, are not just technical solution nor can be detached from social elements.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 56th Hawaii International Conference on System Sciences
KustantajaHawaii International Conference on System Sciences (HICSS)
ISBN (elektroninen)978-0-9981331-6-4
TilaJulkaistu - tammik. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaAnnual Hawaii International Conference on System Sciences - Maui, Yhdysvallat
Kesto: 3 tammik. 20236 tammik. 2023
Konferenssinumero: 56

Conference

ConferenceAnnual Hawaii International Conference on System Sciences
LyhennettäHICSS
Maa/AlueYhdysvallat
KaupunkiMaui
Ajanjakso03/01/202306/01/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Context Changes and the Performance of a Learning Human-in-the-loop System: A Case Study of Automatic Speech Recognition Use in Medical Transcription'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä