Abstrakti
A finite set of vectors X in the d-dimensional Euclidean space Rd is called an s-distance set if the set of mutual distances between distinct elements of X has cardinality exactly s. In this paper we present a combined approach of isomorph-free exhaustive generation of graphs and Gröbner basis computation to classify the largest 3-distance sets in R4, the largest 4-distance sets in R3, and the largest 6-distance sets in R2. We also construct new examples of large s-distance sets in Rd for d ≤ 8 and s ≤ 6, and independently verify several earlier results from the literature.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | P1.23 |
Sivumäärä | 18 |
Julkaisu | Electronic Journal of Combinatorics |
Vuosikerta | 27 |
Numero | 1 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 24 tammik. 2020 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |