Constructing error-correcting binary codes using transitive permutation groups

Antti Laaksonen*, Patric R.J. Östergård

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

5 Sitaatiot (Scopus)

Abstrakti

Transitive permutation groups are recurrent in the study of automorphism groups of combinatorial objects. For binary error-correcting codes, groups are here considered that act transitively on the pairs of coordinates and coordinate values. By considering such groups in an exhaustive manner and carrying out computer searches, the following new bounds are obtained on A2(n,d), the maximum size of a binary code of length n and minimum distance d: A2(17,3)≥5632, A2(20,3)≥40960, A2(21,3)≥81920, A2(22,3)≥163840, A2(23,3)≥327680, A2(23,9)≥136, and A2(24,5)≥17920.

AlkuperäiskieliEnglanti
Sivut65-70
JulkaisuDiscrete Applied Mathematics
Vuosikerta233
DOI - pysyväislinkit
TilaJulkaistu - 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Constructing error-correcting binary codes using transitive permutation groups'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä