Projekteja vuodessa
Abstrakti
We consider the optimization of complex performance metrics in multi-label classification under the population utility framework. We mainly focus on metrics linearly decomposable into a sum of binary classification utilities applied separately to each label with an additional requirement of exactly k labels predicted for each instance. These “macro-at-k” metrics possess desired properties for extreme classification problems with long tail labels. Unfortunately, the at-k constraint couples the otherwise independent binary classification tasks, leading to a much more challenging optimization problem than standard macro-averages. We provide a statistical framework to study this problem, prove the existence and the form of the optimal classifier, and propose a statistically consistent and practical learning algorithm based on the Frank-Wolfe method. Interestingly, our main results concern even more general metrics being non-linear functions of label-wise confusion matrices. Empirical results provide evidence for the competitive performance of the proposed approach.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 12th International Conference on Learning Representations (ICLR 2024) |
Kustantaja | Curran Associates Inc. |
ISBN (painettu) | 978-1-7138-9865-8 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Learning Representations - Messe Wien Exhibition and Congress Center, Vienna, Itävalta Kesto: 7 toukok. 2024 → 11 toukok. 2024 Konferenssinumero: 12 https://iclr.cc/ |
Conference
Conference | International Conference on Learning Representations |
---|---|
Lyhennettä | ICLR |
Maa/Alue | Itävalta |
Kaupunki | Vienna |
Ajanjakso | 07/05/2024 → 11/05/2024 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Consistent algorithms for multi-label classification with macro-at-k metrics'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
ScaleX/Babbar: Scalable and Robust Representation Learning in Large output Spaces
Babbar, R. (Vastuullinen tutkija)
01/09/2022 → 31/08/2026
Projekti: Academy of Finland: Other research funding
-
HPC-HD/Babbar: High Performance Computing for the Detection and Analysis of Historical Discourses
Babbar, R. (Vastuullinen tutkija)
01/01/2022 → 31/12/2024
Projekti: Academy of Finland: Other research funding