Consistent algorithms for multi-label classification with macro-at-k metrics

Erik Schultheis, Wojciech Kotłowski, Marek Wydmuch, Rohit Babbar, Strom Borman, Krzysztof Dembczyński

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

We consider the optimization of complex performance metrics in multi-label classification under the population utility framework. We mainly focus on metrics linearly decomposable into a sum of binary classification utilities applied separately to each label with an additional requirement of exactly k labels predicted for each instance. These “macro-at-k” metrics possess desired properties for extreme classification problems with long tail labels. Unfortunately, the at-k constraint couples the otherwise independent binary classification tasks, leading to a much more challenging optimization problem than standard macro-averages. We provide a statistical framework to study this problem, prove the existence and the form of the optimal classifier, and propose a statistically consistent and practical learning algorithm based on the Frank-Wolfe method. Interestingly, our main results concern even more general metrics being non-linear functions of label-wise confusion matrices. Empirical results provide evidence for the competitive performance of the proposed approach.

AlkuperäiskieliEnglanti
Otsikko12th International Conference on Learning Representations (ICLR 2024)
KustantajaCurran Associates Inc.
ISBN (painettu)978-1-7138-9865-8
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Learning Representations - Messe Wien Exhibition and Congress Center, Vienna, Itävalta
Kesto: 7 toukok. 202411 toukok. 2024
Konferenssinumero: 12
https://iclr.cc/

Conference

ConferenceInternational Conference on Learning Representations
LyhennettäICLR
Maa/AlueItävalta
KaupunkiVienna
Ajanjakso07/05/202411/05/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Consistent algorithms for multi-label classification with macro-at-k metrics'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä