Connection probabilities of multiple FK-Ising interfaces

Yu Feng, Eveliina Peltola, Hao Wu*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
4 Lataukset (Pure)

Abstrakti

We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight q∈[1,4). Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of q than the FK-Ising model (q=2). Given the convergence of interfaces, the conjectural formulas for other values of q could be verified similarly with relatively minor technical work. The limit interfaces are variants of SLEκ curves (with κ=16/3 for q=2). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all q∈[1,4), thus providing further evidence of the expected CFT description of these models.

AlkuperäiskieliEnglanti
Sivut281-367
Sivumäärä87
JulkaisuProbability Theory and Related Fields
Vuosikerta189
Numero1-2
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Connection probabilities of multiple FK-Ising interfaces'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä