Concise and interpretable multi-label rule sets

Martino Ciaperoni*, Han Xiao, Aristides Gionis

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Multi-label classification is becoming increasingly ubiquitous, but not much attention has been paid to interpretability. In this paper, we develop a multi-label classifier that can be represented as a concise set of simple 'if-then' rules, and thus, it offers better interpretability compared to black-box models. Notably, our method is able to find a small set of relevant patterns that lead to accurate multi-label classification, while existing rule-based classifiers are myopic and wasteful in searching rules, requiring a large number of rules to achieve high accuracy. In particular, we formulate the problem of choosing multi-label rules to maximize a target function, which considers not only discrimination ability with respect to labels, but also diversity. Accounting for diversity helps to avoid redundancy, and thus, to control the number of rules in the solution set. To tackle the said maximization problem we propose a 2-approximation algorithm, which relies on a novel technique to sample high-quality rules. In addition to our theoretical analysis, we provide a thorough experimental evaluation, which indicates that our approach offers a trade-off between predictive performance and interpretability that is unmatched in previous work.

AlkuperäiskieliEnglanti
OtsikkoProceedings - 22nd IEEE International Conference on Data Mining, ICDM 2022
ToimittajatXingquan Zhu, Sanjay Ranka, My T. Thai, Takashi Washio, Xindong Wu
KustantajaIEEE
Sivut71-80
Sivumäärä10
ISBN (elektroninen)978-1-6654-5099-7
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Data Mining - Hilton Hotel, Hilton Orlando, 6001 Destination Pkwy, Orlando, Yhdysvallat
Kesto: 28 marrask. 20221 jouluk. 2022
Konferenssinumero: 22
https://icdm22.cse.usf.edu/registration.html

Julkaisusarja

NimiIEEE International Conference on Data Mining
Vuosikerta2022-November
ISSN (painettu)1550-4786

Conference

ConferenceIEEE International Conference on Data Mining
LyhennettäICDM
Maa/AlueYhdysvallat
KaupunkiOrlando
Ajanjakso28/11/202201/12/2022
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Concise and interpretable multi-label rule sets'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä