Abstrakti
A polygon C is an intersecting polygon for a set O of objects in R2 if C intersects each object in O, where the polygon includes its interior. We study the problem of computing the minimum-perimeter intersecting polygon and the minimum-area convex intersecting polygon for a given set O of objects. We present an FPTAS for both problems for the case where O is a set of possibly intersecting convex polygons in the plane of total complexity n. Furthermore, we present an exact polynomial-time algorithm for the minimum-perimeter intersecting polygon for the case where O is a set of n possibly intersecting segments in the plane. So far, polynomial-time exact algorithms were only known for the minimum perimeter intersecting polygon of lines or of disjoint segments.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 30th Annual European Symposium on Algorithms, ESA 2022 |
Toimittajat | Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, Grzegorz Herman |
Kustantaja | Schloss Dagstuhl-Leibniz-Zentrum für Informatik |
Sivumäärä | 13 |
ISBN (elektroninen) | 9783959772471 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 syysk. 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | European Symposium on Algorithms - Berlin and Potsdam, Saksa Kesto: 5 syysk. 2022 → 9 syysk. 2022 https://algo2022.eu/esa/ |
Julkaisusarja
Nimi | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
Vuosikerta | 244 |
ISSN (painettu) | 1868-8969 |
Conference
Conference | European Symposium on Algorithms |
---|---|
Lyhennettä | ESA |
Maa/Alue | Saksa |
Kaupunki | Berlin and Potsdam |
Ajanjakso | 05/09/2022 → 09/09/2022 |
www-osoite |