Computationally efficient dynamic assignment for on-demand ridesharing in congested networks

Ze Zhou*, Claudio Roncoli

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

3 Sitaatiot (Scopus)
130 Lataukset (Pure)

Abstrakti

On-demand ridesharing service has been recognized as an effective way to meet travel needs while significantly reducing the number of required vehicles. However, most previous studies investigating dynamic assignment for ridesharing systems overlook the effects on travel times due to the assignment of requests to vehicles and their routes. To better assign the ridesharing vehicles while considering network traffic, we propose a framework that incorporates time-dependent link travel time into the request-vehicle assignment. Furthermore, we formulate an optimal assignment problem that considers multiple path options and that accounts for the congestion potentially caused by assigned routes. A set of simulations reveals that using an appropriate congestion avoidance ridesharing strategy can remarkably reduce passenger average travel and waiting time by alleviating traffic congestion in the network.
AlkuperäiskieliEnglanti
Otsikko2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2021
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)978-1-7281-8995-6
DOI - pysyväislinkit
TilaJulkaistu - 16 kesäk. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Models and Technologies for Intelligent Transportation Systems - Online, Heraklion, Kreikka
Kesto: 16 kesäk. 202117 kesäk. 2021
Konferenssinumero: 7
https://ieeexplore.ieee.org/xpl/conhome/9529260/proceeding
https://www.mt-its2021.tse.bgu.tum.de/

Conference

ConferenceIEEE International Conference on Models and Technologies for Intelligent Transportation Systems
LyhennettäMT-ITS
Maa/AlueKreikka
Kaupunki Heraklion
Ajanjakso16/06/202117/06/2021
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Computationally efficient dynamic assignment for on-demand ridesharing in congested networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • FinEst Twins: FinEst Twins

    Nieminen, M.

    01/12/201930/11/2026

    Projekti: EU: Framework programmes funding

Siteeraa tätä