Computationally efficient Bayesian learning of Gaussian process state space models

Andreas Svensson, Arno Solin, Simo Särkkä, Thomas B. Schön

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

67 Lataukset (Pure)

Abstrakti

Gaussian processes allow for flexible specification of prior assumptions of unknown dynamics in state space models. We present a procedure for efficient Bayesian learning in Gaussian process state space models, where the representation is formed by projecting the problem onto a set of approximate eigenfunctions derived from the prior covariance structure. Learning under this family of models can be conducted using a carefully crafted particle MCMC algorithm. This scheme is computationally efficient and yet allows for a fully Bayesian treatment of the problem. Compared to conventional system identification tools or existing learning methods, we show competitive performance and reliable quantification of uncertainties in the model.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the Nineteenth International Conference on Artificial Intelligence and Statistics (AISTATS)
KustantajaJMLR
Sivut213–221
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Artificial Intelligence and Statistics - Cadiz, Espanja
Kesto: 9 toukok. 201611 toukok. 2016
Konferenssinumero: 19
http://www.aistats.org/aistats2016/

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaPMLR
Vuosikerta51
ISSN (elektroninen)1938-7228

Conference

ConferenceInternational Conference on Artificial Intelligence and Statistics
LyhennettäAISTATS
Maa/AlueEspanja
KaupunkiCadiz
Ajanjakso09/05/201611/05/2016
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Computationally efficient Bayesian learning of Gaussian process state space models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä