Abstrakti
Gaussian processes allow for flexible specification of prior assumptions of unknown dynamics in state space models. We present a procedure for efficient Bayesian learning in Gaussian process state space models, where the representation is formed by projecting the problem onto a set of approximate eigenfunctions derived from the prior covariance structure. Learning under this family of models can be conducted using a carefully crafted particle MCMC algorithm. This scheme is computationally efficient and yet allows for a fully Bayesian treatment of the problem. Compared to conventional system identification tools or existing learning methods, we show competitive performance and reliable quantification of uncertainties in the model.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the Nineteenth International Conference on Artificial Intelligence and Statistics (AISTATS) |
Kustantaja | JMLR |
Sivut | 213–221 |
Tila | Julkaistu - 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Artificial Intelligence and Statistics - Cadiz, Espanja Kesto: 9 toukok. 2016 → 11 toukok. 2016 Konferenssinumero: 19 http://www.aistats.org/aistats2016/ |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Kustantaja | PMLR |
Vuosikerta | 51 |
ISSN (elektroninen) | 1938-7228 |
Conference
Conference | International Conference on Artificial Intelligence and Statistics |
---|---|
Lyhennettä | AISTATS |
Maa/Alue | Espanja |
Kaupunki | Cadiz |
Ajanjakso | 09/05/2016 → 11/05/2016 |
www-osoite |