Compressive Regularized Discriminant Analysis of High-Dimensional Data with Applications to Microarray Studies

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussavertaisarvioitu

Tutkijat

Organisaatiot

Kuvaus

We propose a modification of linear discriminant analysis, referred to as compressive regularized discriminant analysis (CRDA), for analysis of high-dimensional datasets. CRDA is especially designed for feature elimination purpose and can be used as gene selection method in microarray studies. CRDA lends ideas from ℓ-q,1 norm minimization algorithms in the multiple measurement vectors (MMV) model and utilizes joint-sparsity promoting hard thresholding for feature elimination. A regularization of the sample covariance matrix is also needed as we consider the challenging scenario where the number of features (variables) is comparable or exceeding the sample size of the training dataset. A simulation study and four examples of real life microarray datasets evaluate the performances of CRDA based classifiers. Overall, the proposed method gives fewer misclassification errors than its competitors, while at the same time achieving accurate feature selection.

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
TilaJulkaistu - 10 syyskuuta 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Calgary, Kanada
Kesto: 15 huhtikuuta 201820 huhtikuuta 2018
https://2018.ieeeicassp.org/

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
MaaKanada
KaupunkiCalgary
Ajanjakso15/04/201820/04/2018
www-osoite

ID: 28748811