Projekteja vuodessa
Abstrakti
We propose a modification of linear discriminant analysis, referred to as compressive regularized discriminant analysis (CRDA), for analysis of high-dimensional datasets. CRDA is especially designed for feature elimination purpose and can be used as gene selection method in microarray studies. CRDA lends ideas from ℓ-q,1 norm minimization algorithms in the multiple measurement vectors (MMV) model and utilizes joint-sparsity promoting hard thresholding for feature elimination. A regularization of the sample covariance matrix is also needed as we consider the challenging scenario where the number of features (variables) is comparable or exceeding the sample size of the training dataset. A simulation study and four examples of real life microarray datasets evaluate the performances of CRDA based classifiers. Overall, the proposed method gives fewer misclassification errors than its competitors, while at the same time achieving accurate feature selection.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings |
Kustantaja | IEEE |
Sivut | 4204-4208 |
Sivumäärä | 5 |
Vuosikerta | 2018-April |
ISBN (painettu) | 9781538646588 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 10 syysk. 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Acoustics, Speech, and Signal Processing - Calgary, Kanada Kesto: 15 huhtik. 2018 → 20 huhtik. 2018 https://2018.ieeeicassp.org/ |
Julkaisusarja
Nimi | Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
ISSN (elektroninen) | 2379-190X |
Conference
Conference | IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
Lyhennettä | ICASSP |
Maa/Alue | Kanada |
Kaupunki | Calgary |
Ajanjakso | 15/04/2018 → 20/04/2018 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Compressive Regularized Discriminant Analysis of High-Dimensional Data with Applications to Microarray Studies'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
Robusteja tilastollisia menetelmiä hyvin moniulotteiselle datalle
Ollila, E. (Vastuullinen tutkija), Raninen, E. (Projektin jäsen), Basiri, S. (Projektin jäsen), Tabassum, M. N. (Projektin jäsen) & Mian, A. (Projektin jäsen)
01/09/2016 → 31/12/2020
Projekti: Academy of Finland: Other research funding