Abstrakti
We propose a compressive estimator for the discrete Rihaczek spectrum (RS) of a time-frequency sparse, underspread, nonstationary random process. The new estimator uses a compressed sensing technique to achieve a reduction of the number of measurements. The measurements are randomly located samples of the ambiguity function of the observed signal. We provide a bound on the mean-square estimation error and demonstrate the performance of the estimator by means of simulation results. The proposed RS estimator can also be used for estimating the Wigner-Ville spectrum (WVS) since for an underspread process the RS and WVS are almost equal.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, SSP '09 |
Sivut | 642-645 |
Sivumäärä | 4 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2009 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE Statistical Signal Processing Workshop - Cardiff, Iso-Britannia Kesto: 31 elok. 2009 → 3 syysk. 2009 Konferenssinumero: 15 |
Workshop
Workshop | IEEE Statistical Signal Processing Workshop |
---|---|
Lyhennettä | SSP |
Maa/Alue | Iso-Britannia |
Kaupunki | Cardiff |
Ajanjakso | 31/08/2009 → 03/09/2009 |