Comprehensive Evaluation of ImageNet-Trained CNNs for Texture-Based Rock Classification

Dipendra J. Mandal*, Hilda Deborah, Tabita L. Tobing, Mateusz Janiszewski, James W. Tanaka, Anna Lawrance

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

20 Lataukset (Pure)

Abstrakti

Texture perception plays a vital role in various fields, from computer vision to geology, influencing object recognition, image segmentation, and rock classification. Despite advances in convolutional neural networks (CNNs), their effectiveness in texture-based classification tasks, particularly in rock classification, still needs exploration. This paper addresses this gap by evaluating different CNN architectures using diverse publicly available texture datasets and custom datasets tailored for rock classification. We investigated the performance of 38 distinct models pre-trained on the ImageNet dataset, employing both transfer learning and fine-tuning techniques. The study highlights the efficacy of transfer learning in texture classification tasks and offers valuable perspectives on the performance of different networks on different datasets. We observe that while CNNs trained on datasets like ImageNet prioritize texture-based features, they face challenges in nuanced texture-to-texture classification tasks. Our findings underscore the need for further research to enhance CNNs' capabilities in texture analysis, particularly in the context of rock classification. Through this exploration, we contribute insights into the suitability of CNN architectures for rock texture classification, fostering advancements in both computer vision and geology.

AlkuperäiskieliEnglanti
Sivut94765-94783
Sivumäärä19
JulkaisuIEEE Access
Vuosikerta12
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Comprehensive Evaluation of ImageNet-Trained CNNs for Texture-Based Rock Classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä