Complexity data science : A spin-off from digital twins

Frank Emmert-Streib*, Hocine Cherifi, Kimmo Kaski, Stuart Kauffman, Olli Yli-Harja

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

17 Lataukset (Pure)

Abstrakti

Digital twins offer a new and exciting framework that has recently attracted significant interest in fields such as oncology, immunology, and cardiology. The basic idea of a digital twin is to combine simulation and learning to create a virtual model of a physical object. In this paper, we explore how the concept of digital twins can be generalized into a broader, overarching field. From a theoretical standpoint, this generalization is achieved by recognizing that the duality of a digital twin fundamentally connects complexity science with data science, leading to the emergence of complexity data science as a synthesis of the two. We examine the broader implications of this field, including its historical roots, challenges, and opportunities.

AlkuperäiskieliEnglanti
Artikkelipgae456
Sivut1-7
Sivumäärä7
JulkaisuPNAS Nexus
Vuosikerta3
Numero11
DOI - pysyväislinkit
TilaJulkaistu - 1 marrask. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Complexity data science : A spin-off from digital twins'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä