Comparing computer vision analysis of signed language video with motion capture recordings

Matti Karppa, Tommi Jantunen, Ville Viitaniemi, Jorma Laaksonen, Birgitta Burger, Danny De Weerdt

    Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

    2 Sitaatiot (Scopus)


    We consider a non-intrusive computer-vision method for measuring the motion of a person performing natural signing in video recordings. The quality and usefulness of the method is compared to a traditional marker-based motion capture set-up. The accuracy of descriptors extracted from video footage is assessed qualitatively in the context of sign language analysis by examining if the shape of the curves produced by the different means resemble one another in sequences where the shape could be a source of valuable linguistic information. Then, quantitative comparison is performed first by correlating the computer-vision-based descriptors with the variables gathered with the motion capture equipment. Finally, multivariate linear and non-linar regression methods are applied for predicting the motion capture variables based on combinations of computer vision descriptors. The results show that even the simple computer vision method evaluated in this paper can produce promisingly good results for assisting researchers working on sign language analysis.
    Otsikko8th Language Resources and Evaluation Conference (LREC 2012), Istanbul, Turkey, May 21-27,2012
    TilaJulkaistu - 2012
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
    TapahtumaInternational Conference on Language Resources and Evaluation - Istanbul, Turkki
    Kesto: 21 toukokuuta 201227 toukokuuta 2012
    Konferenssinumero: 8


    ConferenceInternational Conference on Language Resources and Evaluation

    Sormenjälki Sukella tutkimusaiheisiin 'Comparing computer vision analysis of signed language video with motion capture recordings'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä