Comparing 1-dimensional and 2-dimensional spectral feature representations in voice pathology detection using machine learning and deep learning classifiers

Farhad Javanmardi*, Sudarsana Kadiri, Manila Kodali, Paavo Alku

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

10 Sitaatiot (Scopus)
176 Lataukset (Pure)

Abstrakti

The present study investigates the use of 1-dimensional (1-D) and 2-dimensional (2-D) spectral feature representations in voice pathology detection with several classical machine learning (ML) and recent deep learning (DL) classifiers. Four popularly used spectral feature representations (static mel-frequency cepstral coefficients (MFCCs), dynamic MFCCs, spectrogram and mel-spectrogram) are derived in both the 1-D and 2-D form from voice signals. Three widely used ML classifiers (support vector machine (SVM), random forest (RF) and Adaboost) and three DL classifiers (deep neural network (DNN), long short-term memory (LSTM) network, and convolutional neural network (CNN)) are used with the 1-D feature representations. In addition, CNN classifiers are built using the 2-D feature representations. The popularly used HUPA database is considered in the pathology detection experiments. Experimental results revealed that using the CNN classifier with the 2-D feature representations yielded better accuracy compared to using the ML and DL classifiers with the 1-D feature representations. The best performance was achieved using the 2-D CNN classifier based on dynamic MFCCs that showed a detection accuracy of 81%.
AlkuperäiskieliEnglanti
OtsikkoINTERSPEECH 2022
KustantajaInternational Speech Communication Association (ISCA)
Sivut2173 - 2177
Sivumäärä5
Vuosikerta2022-September
DOI - pysyväislinkit
TilaJulkaistu - syysk. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInterspeech - Incheon, Etelä-Korea
Kesto: 18 syysk. 202222 syysk. 2022

Julkaisusarja

NimiInterspeech
KustantajaInternational Speech Communication Association
ISSN (elektroninen)295-1796

Conference

ConferenceInterspeech
Maa/AlueEtelä-Korea
KaupunkiIncheon
Ajanjakso18/09/202222/09/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Comparing 1-dimensional and 2-dimensional spectral feature representations in voice pathology detection using machine learning and deep learning classifiers'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä