Projekteja vuodessa
Abstrakti
The present study investigates the use of 1-dimensional (1-D) and 2-dimensional (2-D) spectral feature representations in voice pathology detection with several classical machine learning (ML) and recent deep learning (DL) classifiers. Four popularly used spectral feature representations (static mel-frequency cepstral coefficients (MFCCs), dynamic MFCCs, spectrogram and mel-spectrogram) are derived in both the 1-D and 2-D form from voice signals. Three widely used ML classifiers (support vector machine (SVM), random forest (RF) and Adaboost) and three DL classifiers (deep neural network (DNN), long short-term memory (LSTM) network, and convolutional neural network (CNN)) are used with the 1-D feature representations. In addition, CNN classifiers are built using the 2-D feature representations. The popularly used HUPA database is considered in the pathology detection experiments. Experimental results revealed that using the CNN classifier with the 2-D feature representations yielded better accuracy compared to using the ML and DL classifiers with the 1-D feature representations. The best performance was achieved using the 2-D CNN classifier based on dynamic MFCCs that showed a detection accuracy of 81%.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | INTERSPEECH 2022 |
Kustantaja | International Speech Communication Association (ISCA) |
Sivut | 2173 - 2177 |
Sivumäärä | 5 |
Vuosikerta | 2022-September |
DOI - pysyväislinkit | |
Tila | Julkaistu - syysk. 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Interspeech - Incheon, Etelä-Korea Kesto: 18 syysk. 2022 → 22 syysk. 2022 |
Julkaisusarja
Nimi | Interspeech |
---|---|
Kustantaja | International Speech Communication Association |
ISSN (elektroninen) | 295-1796 |
Conference
Conference | Interspeech |
---|---|
Maa/Alue | Etelä-Korea |
Kaupunki | Incheon |
Ajanjakso | 18/09/2022 → 22/09/2022 |
Sormenjälki
Sukella tutkimusaiheisiin 'Comparing 1-dimensional and 2-dimensional spectral feature representations in voice pathology detection using machine learning and deep learning classifiers'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
HEART: Speech-based biomarking of heart failure
Alku, P. (Vastuullinen tutkija)
01/09/2020 → 31/08/2024
Projekti: RCF Academy Project