Community detection in networks: A user guide

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Santo Fortunato
  • Darko Hric

Organisaatiot

  • Center for Complex Networks and Systems Research, School of Informatics and Computing, Indiana University, Bloomington
  • Indiana University Bloomington

Kuvaus

Community detection in networks is one of the most popular topics of modern network science. Communities, or clusters, are usually groups of vertices having higher probability of being connected to each other than to members of other groups, though other patterns are possible. Identifying communities is an ill-defined problem. There are no universal protocols on the fundamental ingredients, like the definition of community itself, nor on other crucial issues, like the validation of algorithms and the comparison of their performances. This has generated a number of confusions and misconceptions, which undermine the progress in the field. We offer a guided tour through the main aspects of the problem. We also point out strengths and weaknesses of popular methods, and give directions to their use.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut1-44
JulkaisuPHYSICS REPORTS: REVIEW SECTION OF PHYSICS LETTERS
Vuosikerta659
Varhainen verkossa julkaisun päivämäärä6 lokakuuta 2016
TilaJulkaistu - 11 marraskuuta 2016
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 7391539