Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

Samuel Kaski, Pekka Marttinen, AstraZeneca-Sanger Drug Combination DREAM Consortium

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

218 Sitaatiot (Scopus)
129 Lataukset (Pure)

Abstrakti

The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.

AlkuperäiskieliEnglanti
Artikkeli2674
Sivut1-17
Sivumäärä17
JulkaisuNature Communications
Vuosikerta10
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 17 kesäk. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä