Projekteja vuodessa
Abstrakti
This paper describes a multimodal approach proposed by the MeMAD team for the MediaEval 2019 “Predicting Media memorability” task. Our best approach is a weighted average method combining predictions made separately from visual and textual representations of videos. In particular, we augmented the provided textual descriptions with automatically generated deep captions. For long term
memorability, we obtained better scores using the short term predictions rather than the long term ones. Our best model achieves Spearman scores of 0.522 and 0.277 respectively for the short and long term predictions tasks.
memorability, we obtained better scores using the short term predictions rather than the long term ones. Our best model achieves Spearman scores of 0.522 and 0.277 respectively for the short and long term predictions tasks.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Working Notes Proceedings of the MediaEval 2019 Workshop, Sophia Antipolis, France, 27-30 October 2019 |
Kustantaja | CEUR |
Tila | Julkaistu - 27 lokak. 2019 |
OKM-julkaisutyyppi | B2 Kirjan tai muun kokoomateoksen osa |
Tapahtuma | Multimedia Benchmark Workshop - Sophia Antipolis, Ranska Kesto: 27 lokak. 2019 → 30 lokak. 2019 |
Julkaisusarja
Nimi | CEUR Workshop Proceedings |
---|---|
Kustantaja | CEUR |
Vuosikerta | 2670 |
ISSN (elektroninen) | 1613-0073 |
Workshop
Workshop | Multimedia Benchmark Workshop |
---|---|
Lyhennettä | MediaEval |
Maa/Alue | Ranska |
Kaupunki | Sophia Antipolis |
Ajanjakso | 27/10/2019 → 30/10/2019 |
Sormenjälki
Sukella tutkimusaiheisiin 'Combining Textual and Visual Modeling for Predicting Media Memorability'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
MeMAD Laaksonen
Laaksonen, J. (Vastuullinen tutkija)
01/01/2018 → 31/03/2021
Projekti: EU: Framework programmes funding