Abstrakti
In this article, we propose an efficient method for solving analysis-l1-TV regularization problems with a multi-step alternating direction method of multipliers (ADMM) approach as the fast solver. Additionally, we apply it to a real-data magnetoencephalography (MEG) brain imaging problem as well as to signal reconstruction. In our approach, the inverse problem arising in MEG or signal reconstruction is formulated as an optimization problem which we regularize using a combination of analysis-l1 prior together with a total variation (TV) regularization term. We then formulate an optimization algorithm based on ADMM which can effectively be used to solve the optimization problems. The performance of the algorithm is illustrated in practical scenarios.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 26th European Signal Processing Conference, EUSIPCO 2018 |
Kustantaja | IEEE |
Sivut | 1930-1934 |
Sivumäärä | 5 |
ISBN (painettu) | 978-90-827970-1-5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | European Signal Processing Conference - Rome, Italia Kesto: 3 syysk. 2018 → 7 syysk. 2018 Konferenssinumero: 26 |
Julkaisusarja
Nimi | European Signal Processing Conference |
---|---|
Kustantaja | IEEE COMPUTER SOC |
ISSN (painettu) | 2076-1465 |
Conference
Conference | European Signal Processing Conference |
---|---|
Lyhennettä | EUSIPCO |
Maa/Alue | Italia |
Kaupunki | Rome |
Ajanjakso | 03/09/2018 → 07/09/2018 |