Collaborative Watermarking for Adversarial Speech Synthesis

Lauri Juvela, Xin Wang

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
35 Lataukset (Pure)

Abstrakti

Advances in neural speech synthesis have brought us technology that is not only close to human naturalness, but is also capable of instant voice cloning with little data, and is highly accessible with pre-trained models available. Naturally, the potential flood of generated content raises the need for synthetic speech detection and watermarking. Recently, considerable research effort in synthetic speech detection has been related to the Automatic Speaker Verification and Spoofing Countermeasure Challenge (ASVspoof), which focuses on passive countermeasures. This paper takes a complementary view to generated speech detection: a synthesis system should make an active effort to watermark the generated speech in a way that aids detection by another machine, but remains transparent to a human listener. We propose a collaborative training scheme for synthetic speech watermarking and show that a HiFi-GAN neural vocoder collaborating with the ASVspoof 2021 baseline countermeasure models consistently improves detection performance over conventional classifier training. Furthermore, we demonstrate how collaborative training can be paired with augmentation strategies for added robustness against noise and time-stretching. Finally, listening tests demonstrate that collaborative training has little adverse effect on perceptual quality of vocoded speech.
AlkuperäiskieliEnglanti
Otsikko ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
KustantajaIEEE
Sivut11231-11235
Sivumäärä5
ISBN (elektroninen)979-8-3503-4485-1
DOI - pysyväislinkit
TilaJulkaistu - 18 maalisk. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech and Signal Processing - Seoul, Korea, Republic of, Seoul, Etelä-Korea
Kesto: 14 huhtik. 202419 huhtik. 2024

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech and Signal Processing
LyhennettäICASSP
Maa/AlueEtelä-Korea
KaupunkiSeoul
Ajanjakso14/04/202419/04/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Collaborative Watermarking for Adversarial Speech Synthesis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä