TY - JOUR
T1 - Cohesive-frictional interface model for timber-concrete contacts
AU - Jaaranen, Joonas
AU - Fink, Gerhard
N1 - Publisher Copyright:
© 2021 The Author(s)
PY - 2021/11
Y1 - 2021/11
N2 - This paper presents a two-dimensional interface model for timber-concrete contacts, that has been developed based on the empirical observations from a set of friction tests and additional micromechanical assumptions. In tangential direction, the interface model accounts initial bonding and debonding between the surfaces, different static and kinetic friction as well as smooth transition between them, effects of load reversal, pressure-dependence in friction and sticking stiffness and slip softening over increasing cumulative slip. In normal direction, simple linear cohesive and pressure-overclosure behaviour is assumed. The model has been formulated in cohesive-frictional interface framework, coupling damage-based cohesive behaviour with elastoplasticity-based frictional behaviour. The model has been tested in various cases and verified by comparison on a set of 27 tests on timber-concrete contact pairs under cyclic loading with varying normal pressure and multiple different material pairs. The interface model is able to capture relevant parts of the experimentally observed tangential behaviour, indicating suitability to present timber-concrete interface behaviour under cyclic loading. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
AB - This paper presents a two-dimensional interface model for timber-concrete contacts, that has been developed based on the empirical observations from a set of friction tests and additional micromechanical assumptions. In tangential direction, the interface model accounts initial bonding and debonding between the surfaces, different static and kinetic friction as well as smooth transition between them, effects of load reversal, pressure-dependence in friction and sticking stiffness and slip softening over increasing cumulative slip. In normal direction, simple linear cohesive and pressure-overclosure behaviour is assumed. The model has been formulated in cohesive-frictional interface framework, coupling damage-based cohesive behaviour with elastoplasticity-based frictional behaviour. The model has been tested in various cases and verified by comparison on a set of 27 tests on timber-concrete contact pairs under cyclic loading with varying normal pressure and multiple different material pairs. The interface model is able to capture relevant parts of the experimentally observed tangential behaviour, indicating suitability to present timber-concrete interface behaviour under cyclic loading. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
KW - Bonding
KW - Cyclic loading
KW - Friction
KW - Interface model
KW - Timber-concrete
UR - http://www.scopus.com/inward/record.url?scp=85111474395&partnerID=8YFLogxK
U2 - 10.1016/j.ijsolstr.2021.111174
DO - 10.1016/j.ijsolstr.2021.111174
M3 - Article
AN - SCOPUS:85111474395
SN - 0020-7683
VL - 230-231
JO - International Journal of Solids and Structures
JF - International Journal of Solids and Structures
M1 - 111174
ER -